Числовые функции. Способы задания функций. Область определения и множество значений функции. График функции.

Сложная и обратная функции. Свойства функций: чётность и нечётность, монотонность, периодичность, ограниченность.

Определение. Пусть X и Y – множества произвольной природы. Функцией или *отображением* из множества X во множество Y называется закон f, по которому каждому элементу множества X ставится в соответствие единственный элемент множества Y. Для обозначения функции используются символы:

$$f: X \to Y, \quad y = f(x), \quad x \stackrel{f}{\longmapsto} y.$$

Множество X при этом называется *областью определения* функции f и обозначается D_f . Если при отображении f элементу $x \in X$ соответствует элемент $y = f(x) \in Y$, то y называется *образом* элемента x, а x называется *прообразом* элемента y. Множество всех образов функции называется ее *множеством значений* и обозначается E_f .

Определение. Функции f и g называются pавными, если их области определения совпадают и значения функций во всех точках равны:

- 1) $D_f = D_g$;
- 2) f(x) = g(x) для всех $x \in D_f$.

Если X и Y – числовые множества, то функция $f: X \to Y$ называется *числовой*.

Определение. *Графиком* числовой функции y = f(x) называется множество всех точек (x,y) координатной плоскости, у которых первая координата x принадлежит области определения функции, а вторая координата y является соответствующим значением функции:

$$G_f = \{(x, y) \mid x \in D_f, y = f(x)\}.$$

Определение. Отображение $f: X \to Y$ называется *инъективным*, если разным элементам множества X соответствуют разные элементы множества Y:

$$(\forall x_1, x_2 \in X)(x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)).$$

Определение. Отображение $f: X \to Y$ называется *сюръективным*, если все элементы множества Y участвуют в соответствии, т.е. $Y = E_f$.

Определение. Отображение $f: X \to Y$ называется биективным или взаимнооднозначным соответствием, если оно инъективно и сюръективно.

Определение. *Композицией функций f* и *g* или *сложной функцией*, составленной из функций *f* и *g*, называется функция $g \circ f$, для которой:

- 1) $D_{g \circ f} = D_f \cap \{x \mid f(x) \in D_g\};$
- 2) $(g \circ f)(x) = g(f(x))$ для всех $x \in D_{g \circ f}$.

Определение. *Сужением функций f на множество* $E \subseteq D_f$ называется функция $f|_E$, для которой:

- 1) $D_{f|_{E}} = E$;
- 2) $f|_{E}(x) = f(x)$ для всех $x \in E$.

Определение. Пусть функция f инъективна. Обратной функцией для функции f называется функция f^{-1} , область определения и закон соответствия которой определяются следующим образом:

- 1) $D_{f^{-1}} = E_f$;
- 2) $f^{-1}(x) = y \Leftrightarrow f(y) = x$ для всех $x \in D_{f^{-1}}$.

Определение. Функция называется *обратимой*, если она имеет обратную функцию.

Основные свойства функций

І. Монотонность.

Определение. Функция f называется *строго возрастающей* на множестве $E \subseteq D_f$, если для любых точек x_1 и x_2 из множества E, удовлетворяющих неравенству $x_1 < x_2$, выполняется $f(x_1) < f(x_2)$:

$$f \uparrow \uparrow \quad Ha \quad E \subseteq D_f \stackrel{Df}{\Leftrightarrow} (\forall x_1, x_2 \in E)(x_1 < x_2 \Rightarrow f(x_1) < f(x_2)).$$

Определение. Функция f называется возрастающей на множестве $E \subseteq D_f$, если:

$$f \uparrow$$
 на $E \subseteq D_f \stackrel{Df}{\Leftrightarrow} (\forall x_1, x_2 \in E)(x_1 < x_2 \Rightarrow f(x_1) \le f(x_2))$

Аналогично определяется *строгое убывание* и *убывание* функции на множестве:

$$f \downarrow \downarrow$$
 на $E \subseteq D_f \stackrel{Df}{\Leftrightarrow} (\forall x_1, x_2 \in E)(x_1 < x_2 \Rightarrow f(x_1) > f(x_2))$ $f \downarrow$ на $E \subseteq D_f \stackrel{Df}{\Leftrightarrow} (\forall x_1, x_2 \in E)(x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2))$

Определение. Функция называется *монотонной* (*строго монотонной*) на множестве $E \subseteq D_f$, если она возрастает или убывает (*строго возрастает или строго убывает*) на этом множестве.

Определение. Функция называется *постоянной* на множестве $E \subseteq D_f$, если все ее значения на этом множестве равны между собой:

$$f = const$$
 на $E \subseteq D_f \stackrel{Df}{\Leftrightarrow} (\forall x_1, x_2 \in E)(f(x_1) = f(x_2)).$

Определение. Функция называется *монотонной* (*строго монотонной*, *постоянной*), если она монотонна (строго монотонна, постоянна) на своей области определения.

II. Четность, нечетность.

Определение. Функция f называется *четной*, если ее область определения симметрична относительно нуля, и значения функции в симметричных точках равны:

- 1) $(\forall x)(x \in D_f \Rightarrow -x \in D_f)$,
- 2) $(\forall x \in D_f)(f(-x) = f(x))$.

Определение. Функция f называется *нечетной*, если ее область определения симметрична относительно нуля, и значения функции в симметричных точках являются противоположными по знаку числами:

- 1) $(\forall x)(x \in D_f \Rightarrow -x \in D_f)$,
- 2) $(\forall x \in D_f)(f(-x) = -f(x))$.

III. Периодичность.

Определение. Число $T \neq 0$ называется периодом функции f, если области определения функции вместе с любой точкой x принадлежат также точки x+T и x-T, и в этих точках значения функции равны:

- 1) $(\forall x)(x \in D_f \Leftrightarrow x + T \in D_f)$,
- 2) $(\forall x \in D_f)(f(x+T) = f(x))$.

Определение. Функция f называется nepuoduческой, если она имеет период.

IV. Ограниченность.

Определение. Функция f называется *ограниченной сверху на множестве* $E \subseteq D_f$, если существует такое число M, что $f(x) \le M$ для всех x из множества E:

$$f$$
 ограничена сверху на множестве $E \subseteq D_f \iff (\exists M \in \mathbf{R}) (\forall x \in E) (f(x) \leq M)$.

Определение. Функция f называется *ограниченной снизу на множестве* $E \subseteq D_f$, если существует такое число m, что $f(x) \ge m$ для всех x из множества E:

$$f$$
 ограничена снизу на множестве $E \subseteq D_f \iff (\exists m \in \mathbb{R}) (\forall x \in E) (f(x) \ge m)$.

Определение*. Функция f называется *ограниченной на множестве* $E \subseteq D_f$, если она ограничена сверху и снизу на этом множестве, т. е. существуют такие числа m и M, что $m \le f(x) \le M$ для всех x из множества E:

Часто при исследовании на ограниченность оказывается удобно использовать следующее определение ограниченной.

Определение.** Функция f называется *ограниченной на множестве* $E \subseteq D_f$, если существует такое число M > 0, что $|f(x)| \le M$ для всех x из множества E:

$$f$$
 ограничена на множестве $E \subseteq D_f \iff (\exists M \ge 0)(\forall x \in E)(|f(x)| \le M)$.

Предложение. Определения * и ** ограниченной на множестве функции эквивалентны.